Challenges in Atmospheric Correction and Vicarious Calibration

Constant Mazeran, solvo, France

amt4sentinelfrm workshop, Plymouth, 20.06.2017

Content

- Calibration and validation of Ocean Colour Radiometry - OCR
- Consistency of the overall process comprising
 - Vicarious calibration VCAL
 - Validation VAL
 - Mission operation **OP**
- Standard atmospheric correction: Gordon & Wang, Antoine & Morel

Integrated view on VCAL/VAL/OP

Example: MERIS 3rd

ranracaccina

MERIS 3RP

MERIS 3RP + improved Bright Pixel Atmospheric Correction (BPAC)

G. Moore, C. Mazeran, J-P. Huot (2017). MERIS Bright Pixel Atmospheric Correction. MERIS ATBD 2.6 - Also in use for OLCI AMT4SentinelFRM workshop 2017

Error and uncertainty in OCR

• For VAL, in terms of relative error on ρ_w :

$$\frac{\Delta \rho_{w}}{\rho_{w}^{t}} = \left(\frac{\Delta \rho_{gc}}{\rho_{gc}} \cdot \frac{\rho_{gc}}{t\rho_{w}^{t}} - \frac{\Delta \rho_{path}}{\rho_{path}^{t}} \cdot \frac{\rho_{path}^{t}}{t\rho_{w}^{t}} - \frac{\Delta t}{t^{t}}\right) / \left(1 + \frac{\Delta t}{t^{t}}\right)$$
calibration

• For **OP**, in terms of relative uncertainty on ρ_w (cf. GUM):

$$\left(\frac{u(\rho_w)}{\rho_w}\right)^2 \approx \left(\frac{u(\rho_{gc})}{\rho_{gc}}\right)^2 \cdot \left(\frac{\rho_{gc}}{t\rho_w}\right)^2 + \left(\frac{u(\rho_{path})}{\rho_{path}}\right)^2 \cdot \left(\frac{\rho_{path}}{t\rho_w}\right)^2 + \left(\frac{u(t)}{t}\right)^2 + \left(\frac{u(t)}{t}\right)^2 + \left(\frac{u(t)}{t\rho_w}\right)^2 + \left$$

• For VCAL, in terms of uncertainty on gains:

$$u(g) \approx \frac{t\rho_w^t}{\rho_{gc}} \sqrt{\left(\frac{u(\rho_w^t)}{\rho_w^t}\right)^2 + \left(\frac{u(\rho_{wath})}{\rho_{path}}\right)^2 \cdot \left(\frac{\rho_{path}}{t\rho_w^t}\right)^2 + \left(\frac{u(\rho_{wath})}{t\rho_w^t}\right)^2 + \left(\frac{u(\rho_{wath})}{t\rho_{wath}}\right)^2 + \left(\frac{u(\rho_{wath})}{t\rho_{wath}}\right$$

Error in atm. scattering functions

- AERONET aerosol IOPs (phase function, single scattering albedo, extinction coefficient) from inversion of solar extinction and sky radiance Limited in bands.
- **Radiative transfer model** applied to MERIS acquisition matching AERONET: temporal interpolation or $\Delta t < 3h$, no glint, no cloud or ice haze, no PCD flags $\rightarrow \rho_{path}^{t}$ and t^{t}

AMT4SentinelFRM workshop 2017

Error in atm. scattering functions

- AERONET aerosol IOPs (phase function, single scattering albedo, extinction coefficient) from inversion of solar extinction and sky radiance Limited in bands.
- **Radiative transfer model** applied to MERIS acquisition matching AERONET: temporal interpolation or $\Delta t < 3h$, no glint, no cloud or ice haze, no PCD flags $\rightarrow \rho_{path}^{t}$ and t^{t}

AMT4SentinelFRM workshop 2017

Consistency in atm. & marine error?

• Can we achieve consistency between uncertainty provided by ρ_{path}^{t} , t^{t} (AERONET) and uncertainty provided by in situ ρ_{w}^{t} ?

$$\frac{\Delta \rho_{w}}{\rho_{w}^{t}} = \left(\frac{\Delta \rho_{gc}}{\rho_{gc}} \cdot \frac{\rho_{gc}}{t\rho_{w}^{t}} - \frac{\Delta \rho_{path}}{\rho_{path}^{t}} \cdot \frac{\rho_{path}^{t}}{t\rho_{w}^{t}} - \frac{\Delta t}{t^{t}}\right) / \left(1 + \frac{\Delta t}{t^{t}}\right)$$
In situ ρ_{w}^{t}
=1-g
AERONET

$LANAI - \lambda = 443 \text{ nm}$				AAOT – λ = 443 nm		
	MOBY	AERONET and g=0.975			AERONET- OC	AERONET and g=0.996
Mean rel. diff.	1%	2%		Mean rel. diff.	-13%	-12%
Mean abs. rel. diff.	7%	9%		Mean abs. rel. diff	. 16%	22%
RMS	3.1 10 ⁻³	3.5 10 ⁻³		RMS	4.8 10 ⁻³	6.1 10 ⁻³
	MERIS 3RP		RP			
AMT4SentinelFRM workshop 2017		sol√o				8

Conclusion

Thank you

Acknowledgment:

- Francis Zagolski, sol \sqrt{o} : Radiative transfer model
- Gerald Moore, Bio-Optika & Jean-Paul Huot, ESA: BPAC
- Ken Voss, University of Miami: MOBY data
- David Antoine, LOV: BOUSSOLE data
- Giuseppe Zibordi, JRC: AERONET & AERONET-OC data
- Brent Holben, NASA & Daniela Meloni, ENEA: AERONET data
- Jeremy Werdell & Sean Bailey, NASA: NOMAD database
- ACRI, ARGANS & ESA: MERMAID database & ODESA processor
- Brockmann Consult: Calvalus data extraction

Funding: ESA IDEAS+ SPPA (Phase 2) & EC/JRC

Consistency in MERIS 4th reproc.

- Various improvements achieved by MERIS QWG (L1b, classif, BPAC, AC ...)
- MOBY and BOUSSOLE gains agreement: Chi2 test of homogeneity: if $\frac{|\bar{g}_M \bar{g}_B|}{\sqrt{\sigma_M^2/N_M + \sigma_B^2/N_B}} < 1.96$, there is 95% probability that both sets of gains belong to the same distribution

